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Self study from the textbook

- Pointers and L-value and R-value

- Forward reference
- Visibility vs. lifetime
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Syntactic Issues

• Lexical rules for names

• Collection of reserved words or keywords
• Case sensitivity
• Early languages: no
• C-like: yes
• PHP: partly yes, partly no
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Binding
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L-value vs. R-value

L-value: use of a variable name to denote its address.

Example:  x = …

R-value: use of a variable name to denote its value.

Example:  … = … x …

What’s the first PL to clearly distinguish L- and R-value?
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#include <stdio.h>
int main()
{
  int x = 50, y = 10; //50 is stored in l-value of x. So, r-value of x = 50.
  int *p = &y; //r-value of p is l-value of y (i.e., y's address)
  *p = x; //r-value of r-value of p is r-value of x
  x = *p + 100; //r-value of r-value of p + 100 is assigned to l-value of x
  printf("p = %p, *p = %d\nx = %d, y = %d\n", p, *p, x, y);
 

  p = &x; //r-value of p is changed to the l-value of x (i.e., x's address)
  printf("After changing pointer:\np = %p, 

  *p = %d\nx = %d, y = %d\n", p, *p, x, y);
 

  return 0;
}

Self study: Example C code to understand pointers and 
L-value and R-value (posted on Canvas)
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Scope
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Scope

The scope of a name is the collection of statements 
which can access the name binding.
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1 void sort (float a[ ], int size) {
2   int i, j;
3   for (i = 0; i < size; i++)
4     for (j = i + 1; j < size; j++)
5        if (a[j] < a[i]) {
6            float t;
7            t = a[i]; 
8            a[i] = a[j];
9            a[j] = t;
10      }
11 }         

What are the scopes of i, j, and t?
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Scoping error

for (int i = 0; i < 10; i++) {

    System.out.println(i);

}

i = 0; // invalid reference to i
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Design Issues

• Dynamic or static?

• Allow forward reference? (Self study)
• Using an identifier before its declaration
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Static and dynamic scoping

Static scoping: a name is bound to a collection of 
statements according to its position in the source 
program.

Dynamic scoping: binding depends on the control 
flow of the program.

Most modern languages use static (or lexical) scoping.
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How to implement scoping and name 
resolution?
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Symbol Table
(Compiler’s Database)
Data structure for scoping and name resolution
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1 int h, i; 
2 void B(int w) {
3     int j, k;
4     i = 2*w;
5     w = w+1;
6     ...
7 }
8 void A (int x, int y) { 
9     float i, j; 
10   B(h); 
11   i = 3;
12   ... 
13 }

14 void main() {
15    int a, b;
16    h = 5; a = 3; b = 2;
17    A(a, b);
18    B(h);
19    ...
20 }

i (line 4) vs. 
i (line 11)
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Symbol table data structure:
Stack of dictionaries

Each dictionary:
{<name, binding>, <name, binding>, …}
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Symbol table data structure:
Stack of dictionaries

• { : push a new dictionary

• } : pop the top dictionary

• Var declaration: insert its binding 
into the top dictionary

• Name reference (not var dec): search 
stack top to bottom

Algorithm:
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Static Scoping:

Each function has its own 
symbol table
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1 int h, i; 
2 void B(int w) {
3     int j, k;
4     i = 2*w;
5     w = w+1;
6     ...
7 }
8 void A (int x, int y) { 
9     float i, j; 
10   B(h); 
11   i = 3;
12   ... 
13 }

14 void main() {
15    int a, b;
16    h = 5; a = 3; b = 2;
17    A(a, b);
18    B(h);
19    ...
20 }

1. Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
2. Function B: <w, 2> <j, 3> <k, 4>
    <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
3. Function A: <x, 8> <y, 8> <i, 9> <j, 9>
    <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
4. Function main: <a, 15> <b, 15>
    <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

i (line 4) vs. i (line 11)
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Dynamic Scoping:

The whole program maintains a 
single symbol table
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Call history: main (17) ® A (10) ® B 

B:   <w, 2> <j, 3> <k, 3>
A:   <x, 8> <y, 8> <i, 9> <j, 9>
main : <a, 15> <b, 15> 
   <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 9> in A.

1 int h, i; 
2 void B(int w) {
3    int j, k;
4    i = 2*w;
5    w = w+1;
6    ...
7 }
8 void A (int x, int y) { 
9    float i, j; 
10  B(h); 
11  i = 3;
12  ... 
13 }

14 void main() {
15    int a, b;
16    h = 5; a = 3; b = 2;
17    A(a, b);
18    B(h);
19    ...
20 }
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Call history: main (18) ® B
 
B:   <w, 2> <j, 3> <k, 3>
main:  <a, 15> <b, 15>
   <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 1> in global scope.

1 int h, i; 
2 void B(int w) {
3    int j, k;
4    i = 2*w;
5    w = w+1;
6    ...
7 }
8 void A (int x, int y) { 
9    float i, j; 
10  B(h); 
11  i = 3;
12  ... 
13 }

14 void main() {
15    int a, b;
16    h = 5; a = 3; b = 2;
17    A(a, b);
18    B(h);
19    ...
20 }
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Another example: swapping using
C (static scoping)

After swap: x = 100, y = 200
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Swapping
Perl program (dynamic scoping)

After swap: x = 200, y = 100
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Michael Scott (Programming Languages)

It is not entirely clear whether the use of dynamic scoping in 
Lisp and other early interpreted languages was deliberate 
or accidental. One reason to think that it may have been 
deliberate is that it makes it very easy for an interpreter to 
look up the meaning of a name: all that is required is a 
stack of. Unfortunately, this simple implementation has a 
very high run-time cost, and experience indicates that 
dynamic scoping makes programs harder to understand. 
The modern consensus seems to be that dynamic scoping 
is usually a bad idea.
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Other issues (self study)

• Visibility (re-declaration)

• Overloading
• Lifetime (vs. scope)
• Variable can be out-of-scope temporarily but can still be 

living


