
Copyright © 2006 The McGraw-Hill Companies, Inc.

Names
Ref: Tucker-Noonan [Ch. 4]

CSCI-2320
Principles of Programming Languages

Copyright © 2006 The McGraw-Hill Companies, Inc.

Self study from the textbook

- Pointers and L-value and R-value

- Forward reference
- Visibility vs. lifetime

Copyright © 2006 The McGraw-Hill Companies, Inc.

Syntactic Issues

• Lexical rules for names

• Collection of reserved words or keywords
• Case sensitivity
• Early languages: no
• C-like: yes
• PHP: partly yes, partly no

Copyright © 2006 The McGraw-Hill Companies, Inc.

Binding

Copyright © 2006 The McGraw-Hill Companies, Inc.

L-value vs. R-value

L-value: use of a variable name to denote its address.

Example: x = …

R-value: use of a variable name to denote its value.

Example: … = … x …

What’s the first PL to clearly distinguish L- and R-value?

Copyright © 2006 The McGraw-Hill Companies, Inc.

#include <stdio.h>
int main()
{
 int x = 50, y = 10; //50 is stored in l-value of x. So, r-value of x = 50.
 int *p = &y; //r-value of p is l-value of y (i.e., y's address)
 *p = x; //r-value of r-value of p is r-value of x
 x = *p + 100; //r-value of r-value of p + 100 is assigned to l-value of x
 printf("p = %p, *p = %d\nx = %d, y = %d\n", p, *p, x, y);

 p = &x; //r-value of p is changed to the l-value of x (i.e., x's address)
 printf("After changing pointer:\np = %p,

 *p = %d\nx = %d, y = %d\n", p, *p, x, y);

 return 0;
}

Self study: Example C code to understand pointers and
L-value and R-value (posted on Canvas)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Scope

Copyright © 2006 The McGraw-Hill Companies, Inc.

Scope

The scope of a name is the collection of statements
which can access the name binding.

Copyright © 2006 The McGraw-Hill Companies, Inc.

1 void sort (float a[], int size) {
2 int i, j;
3 for (i = 0; i < size; i++)
4 for (j = i + 1; j < size; j++)
5 if (a[j] < a[i]) {
6 float t;
7 t = a[i];
8 a[i] = a[j];
9 a[j] = t;
10 }
11 }

What are the scopes of i, j, and t?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Scoping error

for (int i = 0; i < 10; i++) {

 System.out.println(i);

}

i = 0; // invalid reference to i

Copyright © 2006 The McGraw-Hill Companies, Inc.

Design Issues

• Dynamic or static?

• Allow forward reference? (Self study)
• Using an identifier before its declaration

Copyright © 2006 The McGraw-Hill Companies, Inc.

Static and dynamic scoping

Static scoping: a name is bound to a collection of
statements according to its position in the source
program.

Dynamic scoping: binding depends on the control
flow of the program.

Most modern languages use static (or lexical) scoping.

Copyright © 2006 The McGraw-Hill Companies, Inc.

How to implement scoping and name
resolution?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Symbol Table
(Compiler’s Database)
Data structure for scoping and name resolution

Copyright © 2006 The McGraw-Hill Companies, Inc.

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2*w;
5 w = w+1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

i (line 4) vs.
i (line 11)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Symbol table data structure:
Stack of dictionaries

Each dictionary:
{<name, binding>, <name, binding>, …}

Copyright © 2006 The McGraw-Hill Companies, Inc.

Symbol table data structure:
Stack of dictionaries

• { : push a new dictionary

• } : pop the top dictionary

• Var declaration: insert its binding
into the top dictionary

• Name reference (not var dec): search
stack top to bottom

Algorithm:

Copyright © 2006 The McGraw-Hill Companies, Inc.

Static Scoping:

Each function has its own
symbol table

Copyright © 2006 The McGraw-Hill Companies, Inc.

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2*w;
5 w = w+1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

1. Outer scope: <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
2. Function B: <w, 2> <j, 3> <k, 4>
 <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
3. Function A: <x, 8> <y, 8> <i, 9> <j, 9>
 <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>
4. Function main: <a, 15> <b, 15>
 <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

i (line 4) vs. i (line 11)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Dynamic Scoping:

The whole program maintains a
single symbol table

Copyright © 2006 The McGraw-Hill Companies, Inc.

Call history: main (17) ® A (10) ® B

B: <w, 2> <j, 3> <k, 3>
A: <x, 8> <y, 8> <i, 9> <j, 9>
main : <a, 15> <b, 15>
 <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 9> in A.

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2*w;
5 w = w+1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

Copyright © 2006 The McGraw-Hill Companies, Inc.

Call history: main (18) ® B

B: <w, 2> <j, 3> <k, 3>
main: <a, 15> <b, 15>
 <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Reference to i (4) resolves to <i, 1> in global scope.

1 int h, i;
2 void B(int w) {
3 int j, k;
4 i = 2*w;
5 w = w+1;
6 ...
7 }
8 void A (int x, int y) {
9 float i, j;
10 B(h);
11 i = 3;
12 ...
13 }

14 void main() {
15 int a, b;
16 h = 5; a = 3; b = 2;
17 A(a, b);
18 B(h);
19 ...
20 }

Copyright © 2006 The McGraw-Hill Companies, Inc.

Another example: swapping using
C (static scoping)

After swap: x = 100, y = 200

Copyright © 2006 The McGraw-Hill Companies, Inc.

Swapping
Perl program (dynamic scoping)

After swap: x = 200, y = 100

Copyright © 2006 The McGraw-Hill Companies, Inc.

Michael Scott (Programming Languages)

It is not entirely clear whether the use of dynamic scoping in
Lisp and other early interpreted languages was deliberate
or accidental. One reason to think that it may have been
deliberate is that it makes it very easy for an interpreter to
look up the meaning of a name: all that is required is a
stack of. Unfortunately, this simple implementation has a
very high run-time cost, and experience indicates that
dynamic scoping makes programs harder to understand.
The modern consensus seems to be that dynamic scoping
is usually a bad idea.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Other issues (self study)

• Visibility (re-declaration)

• Overloading
• Lifetime (vs. scope)
• Variable can be out-of-scope temporarily but can still be

living

